2019/10/28
Language
Traditional Chinese
File format
EPUB fixed layout (25MB), fit in large screen and Pubook
Pages
114
ISBN
9789865111625

各位是否有過這種感受呢?在看到數學上的圖形時,覺得那些形狀有種不可思議的美感,時而整齊對稱,時而反覆循環。
這些圖形其實都是遵循著某些規則誕生的。
本書作者在為了創作而研究幾何學時,發現許多形狀都能用數學式製作出來。以此為契機,他開始將數學融合進自己的創作中,嘗試用鉛筆描繪這些數學形狀,並稱其為「數學素描」。
所謂的數學素描,指的是以「數學」為描繪的對象或主題,來「畫素描(dessin)」,以及用這種方式所創作出來的作品。
數學領域中有著各式各樣的形狀,包括旋轉曲面、多面體、拓樸形狀等。進行數學素描時,我們會用3D繪圖軟體重現出這些圖形,然後再用鉛筆與顏料描繪出這些圖形的樣子。
本書意在將數學素描這種新型態的創作方式介紹給大眾,並解說作為主題的各種數學形狀到底有哪些性質,以及這些形狀的畫法等。
將「數學」與「美學」這兩個領域連結起來,就是本書的目標。
希望各位都能透過本書,體會到這種創作帶來的樂趣。
這些圖形其實都是遵循著某些規則誕生的。
本書作者在為了創作而研究幾何學時,發現許多形狀都能用數學式製作出來。以此為契機,他開始將數學融合進自己的創作中,嘗試用鉛筆描繪這些數學形狀,並稱其為「數學素描」。
所謂的數學素描,指的是以「數學」為描繪的對象或主題,來「畫素描(dessin)」,以及用這種方式所創作出來的作品。
數學領域中有著各式各樣的形狀,包括旋轉曲面、多面體、拓樸形狀等。進行數學素描時,我們會用3D繪圖軟體重現出這些圖形,然後再用鉛筆與顏料描繪出這些圖形的樣子。
本書意在將數學素描這種新型態的創作方式介紹給大眾,並解說作為主題的各種數學形狀到底有哪些性質,以及這些形狀的畫法等。
將「數學」與「美學」這兩個領域連結起來,就是本書的目標。
希望各位都能透過本書,體會到這種創作帶來的樂趣。
作品藝廊
前言
目錄
第1章數學與形狀
1.旋轉曲面
圓錐面
二次曲面
環面
蘋果曲面
2.拓樸形狀
紐結
環面紐結
莫比烏斯帶
克萊因瓶
3.多面體
正多面體
半正多面體
星形正多面體
雙曲多面體
4.與自然界有關的形狀
極小曲面
貝殼的形狀
5.數學與藝術
第2章數學素描教室
1開始素描之前
2試著描繪半球面
3試著描繪圓柱面
4試著描繪環面
第3章製作作品的實際情況
1作品製作流程
2準備
3製作
後記
參考文獻.作者簡介
前言
目錄
第1章數學與形狀
1.旋轉曲面
圓錐面
二次曲面
環面
蘋果曲面
2.拓樸形狀
紐結
環面紐結
莫比烏斯帶
克萊因瓶
3.多面體
正多面體
半正多面體
星形正多面體
雙曲多面體
4.與自然界有關的形狀
極小曲面
貝殼的形狀
5.數學與藝術
第2章數學素描教室
1開始素描之前
2試著描繪半球面
3試著描繪圓柱面
4試著描繪環面
第3章製作作品的實際情況
1作品製作流程
2準備
3製作
後記
參考文獻.作者簡介
作者簡介
瑞慶山 香佳Yoshika Zukeyama
數學畫家。1981年生於神奈川縣橫濱市。為了製作新作品而開始研究幾何學中的各種形狀。她在研究過程中了解到,許多形狀都可以用數學式製作出來,於是開始嘗試用鉛筆來描繪這些數學形狀,並稱其為「數學素描」。她希望能以數學形狀為媒介,用繪畫的方式表現數學,發掘出那些潛藏在冰冷無機質之數學符號背後的熱情與思想。作品於「神保町一之一」、「Naturalis Historia」、「數學素描市集」等地販賣。曾協助電影《老師君主》製作裝飾,亦參與過包括MathPower在內的許多數學活動。
瑞慶山 香佳Yoshika Zukeyama
數學畫家。1981年生於神奈川縣橫濱市。為了製作新作品而開始研究幾何學中的各種形狀。她在研究過程中了解到,許多形狀都可以用數學式製作出來,於是開始嘗試用鉛筆來描繪這些數學形狀,並稱其為「數學素描」。她希望能以數學形狀為媒介,用繪畫的方式表現數學,發掘出那些潛藏在冰冷無機質之數學符號背後的熱情與思想。作品於「神保町一之一」、「Naturalis Historia」、「數學素描市集」等地販賣。曾協助電影《老師君主》製作裝飾,亦參與過包括MathPower在內的許多數學活動。
Details
Review
0 ratings
1 stars
0%
2 stars
0%
3 stars
0%
4 stars
0%
5 stars
0%
Write a review
Eligible to write reviews after purchasing products or add to Library